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Coefficient of restitution of colliding viscoelastic spheres

Rosa Ramı´rez,1 Thorsten Po¨schel,2 Nikolai V. Brilliantov,2,3 and Thomas Schwager2

1Departamento de Fisica, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
2Institut für Physik,* Humboldt-Universita¨t zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

3Physics Department, Moscow State University, Moscow 119899, Russia
~Received 26 May 1999!

We perform a dimension analysis for colliding viscoelastic spheres to show that the coefficient of normal
restitution e depends on the impact velocityg as e512g1g1/51g2g2/57•••, in accordance with recent
findings. We develop a simple theory to find explicit expressions for coefficientsg1 andg2. Using these and
few next expansion coefficients fore(g) we construct a Pade´ approximation for this function which may be
used for a wide range of impact velocities where the concept of the viscoelastic collision is valid. The obtained
expression reproduces quite accurately the existing experimental dependencee(g) for ice particles.
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I. INTRODUCTION

The change of relative velocity of inelastically collidin
particles can be characterized by the coefficient of restitu
e. The normal component of the relative velocity after
collision g85vW 129 •eW follows from that before the collisiong

5vW 12•eW via

g852eg, ~1!

wherevW 1 ,vW 2 and vW 18 ,vW 28 are, respectively, the velocities be

fore and after the collision, while the unit vectoreW

[rW12/urW12u gives the direction of the inter-particle vecto
rW125rW12rW2 at the instant of the collision.

From experiments as well as from theory it is well know
that the coefficient of normal restitutione is not a constant
but it depends sensitively on the impact velocity@1–11#. Al-
though most of the results in the field of granular gases h
been derived neglecting this dependence but using
velocity-independent coefficient of restitution~e.g., @12–
18#!, it has been shown that the impact-velocity depende
of the coefficient of restitution has serious consequences
various problems in granular gas dynamics@19–24#.

The equation of motion for inelastically colliding three
dimensional~3D! spheres has been addressed in@24–26#,
where the Hertz contact law@27#

Fel5rj3/2, r[
2Y

3~12n2!
AReff, ~2!

for the elastic inter-particle force, has been extended to
count for the viscoelasticity of the material which causes
dissipative part of the force

Fdiss5
3

2
ArAjj̇. ~3!

*http://summa.physik.hu-berlin.de/;kies/
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Here,j is the compression of the particles during the co
sion j5R11R22urW12rW2u (R1 ,R2 and rW1 ,rW2 are the radii
and the positions of the spheres!, Y andn are, respectively,
the Young modulus and the Poisson ratio of the particle m
terial, Reff[R1R2 /(R11R2), and the dissipative paramete
A reads@25,26#

A5
1

3

~3h22h1!2

~3h212h1! F ~12n2!~122n!

Yn2 G . ~4!

The viscous constantsh1 , h2 relate the dissipative stres
tensor to the deformation rate tensor@25,26,28#. The same
functional dependence ofFdiss(j,j̇) has been obtained in
@29–31# using a different approach. We want to point o
that Eqs.~3! and~4! do only hold if viscoelasticity is the only
dissipative process during the particle collision. For the ca
where plastic deformation, brittle failure, fracture, adhes
etc. have to be considered, there are more appropriate mo
for the particle contact, e.g.,@32#.

The equation of motion for inelastically colliding spher
reads, therefore,

j̈1
r

meff S j3/21
3

2
AAjj̇ D50, ~5!

with

j~0!50, j̇~0!5g,

and with meff[m1m2 /(m11m2)(m1 ,m2 are the masses o
the colliding particles!. To obtain the dependence of the re
titution coefficient on the impact velocity for 3D spheres, t
equation of motion~5! was solved numerically@10,24–26#
and analytically@33#, where the velocity-dependent restitu
tion coefficient has been obtained as a series in power
g1/5:
4465 © 1999 The American Physical Society
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e512C1S 3

2
AD S r

meffD 2/5

g1/51C2S 3

2
AD 2S r

meffD 4/5

g2/5

7••• . ~6!

The first coefficientsC151.153 44 andC250.798 26 were
evaluated analytically and then confirmed by numeri
simulations@33#.

Although in @33# a general method of derivation ofall
coefficients of the expansion~6! has been proposed, to obta
these, extensive calculations have to be performed. This
proach does not provide closed-form expressions for the
efficients, but rather gives them in terms of convergent se
which are to be evaluated up to the desired precision.

In the present study we show that a dimension anal
allows one to obtain the functional form of thee(g) depen-
dence for the elastic and dissipative forces. Within the fram
work of this analysis we reproduce the dependence~6! up to
numerical values of coefficientsCk . A similar approach has
been used by Tanaka@34# to prove that the constant coeffi
cient of restitution is not consistent with physical reality~see
also @10,35#!. We also develop a simple approximativ
theory, which gives a continuum fraction representation
e(g) and a closed-form expression forC1 and C2 with the
same numerical values as above. Using then coeffici
C1 , . . . ,C4 ~with C3 and C4 evaluated in the Appendix in
accordance with the general scheme of Ref.@33#!, we con-
struct a Pade´ approximation, which reproduces fairly we
the experimental data for colliding ice particles@5#.

II. DIMENSIONAL ANALYSIS

To perform the general dimensional analysis we adopt
following form for the elastic and dissipative forces:

Fel5meffD1ja,

Fdiss5meffD2jgj̇b.

This general form~at least for smallj and j̇) follows from
the fact that both elastic and dissipative forces vanish aj

50 and j̇50, respectively. With these notations the equ
tion of motion for colliding particles reads

j̈1D1ja1D2jgj̇b50, ~7!

with

j~0!50, j̇~0!5g,

whereg has already been introduced. Now we choose as
characteristic lengthj0 of the problem, the maximal com
pression for the elastic case. It may be found from the c
dition that the initial kinetic energymeffg2/2 @36# equals the
maximal elastic energymeffD1j0

a11/(a11), which yields

j05S a11

2D1
D 1/(11a)

g2/(11a). ~8!

Choosing then the characteristic time of the problem ast0
5j0 /g, we construct new dimensionless variables
l

p-
o-
s

is

-

r

ts

e

-

e

-

ĵ5j/j0 , j̇̂5 j̇/g, ĵ
¨
5

j0

g2
j̈, ~9!

and recast the equation of motion into dimensionless for

j̈̂1d~g!ĵgj̇̂b1
11a

2
ĵa50 ~10!

with

ĵ~0!50, j̇̂~0!51,

ĵ~tc!50, j̇̂~tc!52e.

In the last equation~10! we supplemented the precollision
initial conditions att50 with the after-collisional conditions
at t5tc (t is the dimensionless time andtc is the dimen-
sionless duration of the collision!. These follow just from the
definition of the restitution coefficient. We point out that a
dependence on the initial impact velocity on any quantity
the problem, includinge ~this is just the dimensionless afte
collisional velocity! comes only through the constantd,
which reads

d~g!5D2S 11a

2D1
D (11g)/(11a)

g2(g2a)/(11a)1b. ~11!

Hence,e(g)5e„d(g)…. A similar result fore→0, b51, and
a53/2 has been obtained in@37#.

If we assume that the restitution coefficient does not
pend on the impact velocityg, then it follows that

2~g2a!1b~11a!50. ~12!

For a linear dependence of the dissipative force on the
locity, i.e., for b51 ~this seems to be the most realistic f
small j̇), one obtains a constant restitution coefficient for t
following.

~i! the linear elastic force,Fel;j, i.e. a51. The condi-
tion ~12! implies g50, and thus the linear dissipative forc
Fdiss;j̇.

~ii ! the Hertz law for 3D spheres~2! a53/2, therefore,
g5 1

4 andFdiss;j̇j1/4 provides a constant restitution coeffi
cient.

We now ask the question: What kind ofe(g) dependence
corresponds to the forces which act during collisions of v
coelastic particles? It may be generally shown@25,26,38#
that the relation

Fdiss5Aj̇
]

]j
Fel~j! ~13!

between the dissipative and elastic forces with the dissipa
constantA given in Eq. ~4! holds, provided the following
three conditions are met@39#.

~i! The elastic part of the stress tensor depends linearly
the deformation tensor@28#.

~ii ! The dissipative part of the stress tensor depends
early on the deformation rate tensor@28#.
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~iii ! The conditions of quasistatic motion are provide
i.e., g!c, tvis!tc @25,26# ~herec is the speed of sound in
the material of particles,tvis is relaxation time of viscous
processes in its bulk!.

From this follows thatb51, g5a21, and thus the con
stant restitution coefficient may be observed only for co
sions of cubic particles with surfaces normal to the direct
of collision. We wish to emphasize that this conclusi
comes from the general analysis of viscoelastic collision

Let us discuss now collisions between spheres with ela
and dissipative forces as given by Eqs.~2! and ~3!, respec-
tively. For these we havemeffD15r, a53/2, andmeffD2
5 3

2 Ar, g51/2, andb51 which yields the functional de
pendence ford(g) ande(g), respectively:

d5
3

2 S 5

4D 3/5

AS r

meffD 2/5

g1/5, ~14!

e5eXAS r

meffD 2/5

g1/5C ~15!

@skipping the prefactor ofd(g) in the last equation# in accor-
dance with Eq.~6! as found previously.

III. RESTITUTION COEFFICIENT FOR SPHERES

Using d/dt5 j̇̂(d/dĵ) it is convenient to write the equa
tion of motion for a collision in the form

d

dĵ
S 1

2
j̇̂21

1

2
ĵ5/2D52dj̇̂ĵ1/25

dE~ ĵ !

dĵ
,

ĵ~0!50; j̇̂~0!51, ~16!

where we introduce the mechanical energy

E[
1

2
j̇̂21

1

2
ĵ5/2. ~17!

To find the energy losses in the first stage of the collisi
which starts with zero compression and ends in the turn
point with maximal compressionĵ0,

E
0

ĵ0dE

dĵ
dĵ52dE

0

ĵ0
j̇̂ ĵ1/2dĵ, ~18!

one needs to know the dependence of the compression rj̇̂

as a function of the compressionĵ.
For the case of elastic collisions, the maximal compr

sion is ĵ051, according to the definition of our dimension

less variables. Hence, the dependencej̇̂( ĵ) follows from the
conservation of energy:

j̇̂~ ĵ !5A12 ĵ5/2. ~19!
,

-
n

ic

,
g

e

-

The velocityj̇̂ vanishes at the turning pointĵ51. For inelas-
tic collisions the maximal compressionĵ0 is smaller than 1,
therefore, one can write an approximation relation for t
inelastic case:

j̇̂~ ĵ !'A12~ ĵ/ ĵ0!5/2, ~20!

which also gives vanishing velocityj̇̂ at the turning pointĵ0.
Integration in Eq.~18! may be performed yielding

1

2
ĵ0

5/22
1

2
52d d ĵ0

3/2, ~21!

where we take into account thatE( ĵ0)5 1
2 ĵ0

5/2, E(0)

5 1
2 j̇̂(0)5 1

2 , and introduce a constant

d[E
0

1

x1/2A12x5/25

ApGS 3

5D
5GS 21

10D
. ~22!

Consider now the inverse collision, which is defined as
collision which starts with velocityeg and ends with veloc-
ity g. According to the concept of the inverse collision intr
duced in@33# ~which is a useful auxiliary model!, it is char-
acterized by a negative damping~the energy is ‘‘pumped’’
into the system during the collision!. The maximal compres-
sion ĵ0 is the same in both collisions, the direct and t
inverse.

Rescaling equation of motion for the inverse collision
the very same way as for the direct collision yields

dE~ ĵ !

dĵ
51dj̇̂ĵ1/2,

ĵ~0!50, j̇̂~0!5e. ~23!

This suggests the following approximative relation forj̇̂( ĵ)
during the inverse collision:

j̇̂~ ĵ !'eA12~ ĵ/ ĵ0!5/2, ~24!

with the additional prefactore, which is the initial velocity in
the inverse collision.

Integration of the energygain for the first stage of the
inverse collision~which equals up to its sign the energy lo
in the second stage of the direct collision@33#! may be per-
formed in just the same way as for the direct collision, yie
ing the result

1

2
ĵ0

5/22
e2

2
51ed dĵ0

3/2, ~25!

where we again useE( ĵ0)5 1
2 ĵ0

5/2 andE(0)5 1
2 e2. Multiply-

ing Eq.~21! by e and summing it up with Eq.~25! we obtain
a simple approximative relation between the restitution co
ficient and the~dimensionless! maximal compression:
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TABLE I. Coefficients of the Pade´ formula ~35! as derived from the coefficientsak .

d05a422a32a2
213a221

d15@12a21a322a41(a221)(3a222a3)#d0
21 52.5839

d25@(a32a2)(122a2)2a4#d0
21 53.5839

d35@a31a2
2(a221)2a4(a211)#d0

21 52.9839
d45@a4(a321)1(a32a2)(a2

222a3)#d0
21 51.1487

d55@2(a32a2)(a42a2a3)2(a42a2
2)22a3(a32a2

2)#d0
21 50.3265
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e5 ĵ0
5/2. ~26!

Substituting this into Eq.~21! we arrive at an equation fo
the restitution coefficient

e12d d e3/551. ~27!

The formal solution to this equation may be written as
continuum fraction~which does not diverge in the limitg
→`):

e215112d d„112d d~11••• !2/5
•••…

2/5. ~28!

Another way of representing the restitution coefficiene
is a series expansion in terms ofd. For practical applications
it is convenient to return to dimensional units. We define
characteristic velocityg* such that

d[
1

2d S g

g*
D 1/5

, ~29!

with d being defined in Eq.~22!. Using the definition~14!
together with Eq.~22! we find for the characteristic velocit

~g* !21/55
Ap

21/552/5

G~3/5!

G~21/10! S 3

2
AD S r

meffD 2/5

. ~30!

Evaluating the numerical prefactor finally yields

~g* !21/551.153 44S 3

2
AD S r

meffD 2/5

. ~31!

Note that the numerical constant 1.153 44 has to be equ
C1 in Eq. ~6!.

With this new notation the restitution coefficient reads

e512a1S g

g*
D 1/5

1a2S g

g*
D 2/5

2a3S g

g*
D 3/5

1a4S g

g*
D 4/5

1••• , ~32!

with a151, a253/5 ~which are exact values!, a356/25
50.24, a457/12550.056, . . . ~which deviate from the cor-
rect ones; see below!. Comparing Eq.~32! with Eq. ~6!, we
conclude that our simple approximative theory reprodu
exactly the coefficientsC1 andC2, which were found before
using extensive analysis@33#.

We also performed rigorous but elaborated calculati
according to the general scheme of@33# to find the exact
coefficients~details are given in the Appendix!

a350.315 119, a450.161 167, ~33!
e

to

s

s

or, respectively,

C3520.483 582, C450.285 279. ~34!

Hence, we observe that while the first two coefficientsa1
51 anda253/5 are correctly obtained from the approxim
tive theory, the next approximated coefficientsa3 ,a4 differ
from the exact ones.

For practical applications, such as molecular dynam
simulations, however, the expansion~32! is of limited value,
due to its divergence for high impact velocities,g→`. Ac-
cording to the velocity distribution function there is a certa
probability that the relative velocityg of colliding particles
exceeds the limit of applicability of Eq.~32!. Therefore, we
use the obtained coefficients to construct a Pade´ approxima-
tion for e(g), which reveals the correct limits of the bound
ary conditions,e(0)51 ande(`)50. Since the dependenc
e(g) is expected to be a smooth, monotonically decreas
function, we choose a ‘‘1-4’’ Pade´ approximation:

e5

11d1S g

g*
D 1/5

11d2S g

g*
D 1/5

1d3S g

g*
D 2/5

1d4S g

g*
D 3/5

1d5S g

g*
D 4/5.

~35!

Standard analysis yields the coefficientsdk in terms of the
coefficientsak @40# ~see Table I!.

Using the characteristic velocityg* 50.32 cm/s for ice as
a fitting parameter we could reproduce fairly well the expe
mental dependence of the restitution coefficient of ice a
function of the impact velocityg in the whole range ofg
~Fig. 1!. The discrepancy with the experimental data at sm
g follows from the fact that the extrapolation expressione
50.32/g0.234, used in@5# has an unphysical divergence atg
→0 and does not imply the fail of the theory for this regio
The scattering of the experimental data presented in@5# is
large for small impact velocity according to experimen
complications, hence the fit formula of@5# cannot be ex-
pected to be accurate enough for too small velocities. Mo
over, in the region of very small velocity, it is possible th
something other than viscoelastic interactions might infl
ence the collision behavior, e.g., adhesion. Similarly,
very high velocities, effects such as brittle failure, fractu
and others may contribute to dissipation.

IV. CONCLUSION

We developed a dimensional analysis for the inelastic c
lision of spherical particles. We could show that for 3
spheres the functional form fore(g) agrees with that derived



h
m
-
re
st
re

a
ra

-

e
-

if
t

n
ro
t

se

L.
rte
.
o.

e

he
-

n-
l-
he

-
q.

-

e

g

th
o

PRE 60 4469COEFFICIENT OF RESTITUTION OF COLLIDING . . .
previously @33#, using a much more complicated approac
Using a simple approximative theory we found a continuu
fraction representation fore(g) and obtained explicit expres
sions for the coefficients of the series expansion of the
titution coefficient in terms of the impact velocity. The fir
two coefficients in this series coincide with that found p
viously by numerical evaluation. Next, we also report on
few coefficients which we have derived within the gene
approach of a previous study@33#. Using the first four coef-
ficients of this series expansion we constructed a Pade´ ap-
proximation for e(g). It reproduces fairly well the experi
mental data for colliding ice particles.

The restitution coefficient as a function of the impact v
locity contains the parameterg* which depends on the elas
tic and viscous material properties@see Eqs.~30!,~2!, and
~4!#. If these properties are known,g* is univocally deter-
mined. Otherwise,g* can be determined experimentally;
the restitution coefficiente is known for one specified impac
velocity, one can determineg* and the full functione(g) is
known. The obtained relation for the restitution coefficie
may be used for a wide range of the impact velocities, p
vided that the energy loss during a collision is attributed
viscoelasticity and that all the other dissipative proces
~plastic deformation, fragmentation of particles! may be ig-
nored.
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APPENDIX

The general method of derivation of the expansion co
ficientsCk has been given in@33#. Here we briefly sketch the
main lines of derivation and provide some details for t
particular cases ofC3 and C4. Since the method of deriva

FIG. 1. Dependence of the normal restitution coefficient on
impact velocity for ice particles. Solid line, experimental data
@5#; dashed line, the Pade´ approximation~35! with the constants
given in the table and with the characteristic velocity for iceg*
50.32 cm/s.
.
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-

l
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t
-
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s
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f-

tion is based on the collection of terms with different depe
dence on the initial velocityg, it is convenient to use a sca
ing, somewhat different from that used before for t
dimensional analysis. Namely, we rescale the time ast8
5(r/meff)

2/5g1/5t and the length asx5(r/meff)
2/5j to recast

Eq. ~5! into the form@41#

x91ag21/5x8Ax1g22/5x3/250, ~A1!

with a[ 3
2 A(r/meff)

2/5, and using all the notations intro
duced previously. The initial conditions for the rescaled E
~A1! now readx(0)50 andx8(0)5g4/5. For simplicity of
notations we will keep, in what follows,t for the rescaled
time. As it was shown in@33#, the trajectory may be ex
panded in terms ofAt as

x~ t !5b1t1/21b2t1b3t3/21b4t21b5t5/21b6t31b7t7/2

1••• . ~A2!

Clearly, bothb1 andb3 should be zero to avoid divergenc
of velocity and acceleration att50. At the same timeb2
5g4/5 andb450, due to the equation of motion at vanishin
compression. This yields

x~ t !5g4/5t1b5t5/21b6t31b7t7/21••• . ~A3!

From Eq.~A3! one obtainsx8(t) andx9(t) which are to be
substituted into the equation of motion~A1!. One also needs
Ax andx3/2; the expansions for these in terms ofAt read

Ax5g2/5t1/21
b5

2g2/5
t21

b6

2g2/5
t5/21

b7

2g2/5
t31••• ~A4!

and

x3/25g6/5t3/21
3

2
g2/5b5t31

3

2
g2/5b6t7/21••• . ~A5!

Inserting the expansions forx8(t), x9(t), Ax, andx3/2 into
Eq. ~A1!, and collecting the orders oft, we obtain

05S 15

4
b51ag1/5D t1/216b6t1S 35

4
b711D t3/2

1~12b813ag1/5b5!t21S 63

4
b91

7

2
ag1/5b6D t5/2.

~A6!

This suggests the coefficients

b552
4

15
ag1/5, ~A7!

b650, ~A8!

b752
4

35
, ~A9!

b85
1

15
a2g2/5, ~A10!

e
f
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b950, ~A11!

so that the solution for the trajectory finally reads

x~ t !5g4/5t2
4

15
agt5/22

4

35
g4/5t7/21

1

15
a2g6/5t41••• .

~A12!

In order to get the higher orders, which is conceptiona
simple but requires extensive calculus, we wrote a prog
@42#, that by formula manipulations, performs exactly t
steps we described above and which is able to find the
jectory up to any desired order.

Generally, it is convenient to write the solution as a s
ries:

x~ t !5g4/5
„x0~ t !1ag1/5x1~ t !1a2g2/5x2~ t !1•••….

~A13!

Here x0(t) is a ‘‘zero-order’’ trajectory, which refers to
the case of undamped collision, the ‘‘first-order’’ trajector
x1(t), accounts for damping in linear~with respect toa)
approximation, the ‘‘second-order’’ trajectory,x2(t), corre-
sponds to the next approximation;a2, etc. Here we give
our results for these ‘‘n-order’’ trajectories up ton53, ob-
tained using the above mentioned program up to the o
t11:

x05t2
4

35
t7/21

1

175
t62

22

104 125
t17/21

52

8 017 625
t11,

x152
4

15
t5/21

3

70
t52

713

238 875
t15/21

61 216

42 639 187
t10,

x25
1

15
t42

937

75 075
t13/21

871

808 500
t9, ~A14!

x352
38

2475
t11/21

43 943

13 513 500
t82

1 184 627

3 594 591 000
t21/2.

To proceed we need to find the maximal compress
xmax, which is reached at timetmax. The point of maximal
compression is a turning point of the trajectory, where
velocity is zero. Therefore, the condition

xmax8 ~ tmax!50 ~A15!

holds at this point. With the above expression for the traj
tory @Eqs. ~A13! and ~A14!#, the last equation~A15! is an
equation to determinetmax, which may be then used to fin
xmax. This equation, however, is a high-order algebraic eq

tion for Atmax, which is not generally solvable. On the oth
hand, for the undamped collision,tmax equals one half of the
collision duration tc

0 and both quantities of interest ar
known @28#:

tmax
0 5

tc
0

2
5S 4

5D 3/5GS 2

5DGS 1

2D
2GS 9

10D
, ~A16!
y
m

a-

-

er

n

e

-

-

x0S tc
0

2 D 5S 5

4D 2/5

.

For a viscoelastic collisiontmax certainly differs fromtc
0/2,

so thattmax5tc
0/21dt. If the dissipation parametera is not

large, the deviationdt is presumably small; therefore, w
expandx8(tmax)5x8(tc

0/21dt) in terms ofdt:

g24/5x8~ tmax!5Fx08S tc
0

2 D 1dtx09S tc
0

2 D 1
dt2

2
x0-S tc

0

2 D 1•••G
1ag1/5Fx18S tc

0

2 D 1dtx19S tc
0

2 D
1

dt2

2
x1-S tc

0

2 D 1•••G
1a2g2/5Fx28S tc

0

2 D 1dtx29S tc
0

2 D 1•••G
1a3g3/5Fx38S tc

0

2 D 1•••G1•••50, ~A17!

where we use representation~A13! for the trajectory. The
deviationdt vanishes ata50 and, thus, suggests the expa
sion in terms ofa:

dt5t1a1t2a21t3a3
••• . ~A18!

Substitutingdt, given by Eq.~A18!, into Eq.~A17! and col-
lecting terms of the same order ofa yields

Y01aY11a2Y21a3Y31•••50, ~A19!

with the abbreviations

Y05x08S tc
0

2 D ,

Y15t1x09S tc
0

2 D 1g1/5x18S tc
0

2 D ,

Y25t2x09S tc
0

2 D 1
t1

2

2
x0-S tc

0

2 D 1g1/5t1x19S tc
0

2 D 1g2/5x28S tc
0

2 D ,

~A20!

Y35t3x09S tc
0

2 D 1t1t2x0-S tc
0

2 D 1
t1

3

6
x-08S tc

0

2 D 1g1/5t2x19S tc
0

2 D
1g1/5

t1
2

2
x1-S tc

0

2 D 1g2/5t1x29S tc
08

2
D 1g3/5x38S tc

08

2
D .

The conditionsYk50 for k50, . . . ,3, together with Eq.
~A20!, allows us to express the constantst1 , t2 , t3, etc. in
terms of functionsx1(t), x2(t), x3(t), etc., and their time
derivatives taken at time (tc

0/2):
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t152g1/5

x18S tc
0

2 D
x09S tc

0

2 D , ~A21!

t25g2/5F 2

x18
2S tc

0

2 D x0-S tc
0

2 D
2x09

3S tc
0

2 D 1

x18S tc
0

2 D x19S tc
0

2 D
x09

2S tc
0

2 D 2

x28S tc
0

2 D
x09S tc

0

2 D G ,

We do not write the expression fort3 since, due to the spe
cial properties of the problem, i.e., due to the fact th
x08(tc

0/2)50, the valuet3 is not needed for calculation ofe
up to fourth order ofa. The functionsx1(t), x2(t), andx3(t)
are known and given by Eqs.~A14!, so that the constantst1
andt2 may be found explicitly.

Writing the maximal compression as

xmax5g4/5Fx0S tc
0

2
1dt D 1ag1/5x1S tc

0

2
1dt D

1ag2/5x2S tc
0

2
1dt D 1a3g3/5x3S tc

0

2
1dt D G ,

~A22!

and expanding this in terms ofdt, using then representatio
of dt as dt5at11a2t21•••, with t1 ,t2 from Eq. ~A21!
and collecting terms of the same order ofa, we obtain

xmax5g4/5~y01ag1/5y11a2g2/5y21a3g3/5y3!,
~A23!

wherey0 , . . . ,y3 are pure numbers:

y05x0S tc
0

2 D 51.093 362, ~A24!

y15x1S tc
0

2 D 520.504 455, ~A25!

y25F x2S tc
0

2 D 2
1

2

x18
2S tc

0

2 D
x09S tc

0

2 D G50.260 542, ~A26!

y35F x3S tc
0

2 D 2

x18S tc
0

2 D x28S tc
0

2 D
x09S tc

0

2 D 1
1

2

x18
2S tc

0

2 D x19S tc
0

2 D
x09S tc

0

2 D

2

x18
3S tc

0

2 D x0-

x09
3~ tc

0/2! G520.136 769, ~A27!

and where we use expressions~A14! for x1(t), x2(t), and
x3(t).
t

To calculate the coefficient of restitution, one has to u
the concept of inverse collision, as was introduced in@33#
and discussed in previous chapters of the present study.
obtains the solution of this inverse collision by replacingg
→eg for the initial velocity anda→2a for the dissipative
coefficient. In particular, this applies to the maximal com
pression of the inverse collisionxmax

inv 5xmax(g→eg, a→
2a). For consistency one has to require the maximum co
pressions for direct and inverse collision to be equal, i.e.

xmax
inv 5xmax, ~A28!

or using Eq.~A23!,

e4/5g4/5~y02ae1/5g1/5y11a2e2/5g2/5y22a3e3/5g3/5y31••• !

5g4/5~y01ag1/5y11a2g2/5y21a3g3/5y31••• !. ~A29!

Equation~A29! is, in fact, an algebraic equation fore1/5,
which may not be generally solved. For this reason we w
e as an expansion ofag1/5, which is the only combination in
which both parameters appear:

e511C1ag1/51C2~ag1/5!21C3~ag1/5!31C4~ag1/5!4

1 . . . , ~A30!

and substitute Eq.~A30! into Eq. ~A29!. Collecting orders
we find

F2
4

5
y0C112y1Gag1/51F S 2

4

5
C21

2

25
C1

2D y01y1C1G
3a2g2/51F S 2

4

5
C31

4

25
C1C22

4

125
C1

3D y0

1y1C22
6

5
y2C112y3Ga3g3/5

1H F2
4

5
C41

2

25
~C2

212C1C3!2
12

125
C1

2C21
11

625
C1

4G
3y01y1C31S 2

6

5
C22

3

25
C1

2D y21
7

5
y3C1J

3a4g4/550. ~A31!

The last equation~A31! yields the final result for the co
efficients:

C15
5

2

y1

y2
521.153 449, ~A32!

C25
15

4 S y1

y2
D 2

5
3

5
C1

250.798 267,

C35
95

16S y1

y2
D 3

2
15

4

y2y1

y0
2

1
5

2

y3

y0
520.483 582,

C45
315

32 S y1

y2
D 4

2
105

8

y2y1
2

y0
3

1
35

4

y3y1

y0
2

50.285 279.
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Using (g* )21/55C1a, we obtain for coefficientsak in ex-
pansion~32!:

a151, ~A33!

a25C2 /C1
253/5, ~A34!

a35C3 /C1
350.315 119 ~A35!
ci

of

s

R.

J.

ro

t,

a,

ci

li-
a45C4 /C1
450.161 167. ~A36!

Note that although the general method given in this
pendix allows one to evaluate up to a desired precisionall, in
principle, coefficientsCk , it does not provide the closed
form expression forC1 as the simple approximate approa
given in the main text does.
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